United States Patent

US009483310B2

(12) (10) Patent No.: US 9,483,310 B2
Moretti 45) Date of Patent: Nov. 1, 2016
(54) ASSOCIATING CACHE MEMORY WITH A (56) References Cited
WORK PROCESS
U.S. PATENT DOCUMENTS
(71) Applicant: Bluedata Software, Inc., Mountain
View, CA (US) 7,676,554 Bl 3/2010 Malmskog et al.
’ 2006/0064549 Al* 3/2006 Wintergerst GO6F 12/127
R . 711/134
(72) Inventor: Michael J. Moretti, Saratoga, CA (US) 2006/0248276 Al* 11/2006 Kilian GO6F 12/0831
. 711/130
(73) Assignee: BLUEDATA SOFTWARE, INC., 2007/0171921 Al 7/2007 Wookey et al.
Mountain View, CA (US) 2007/0244987 Al 10/2007 Pedersen et al.
2008/0183854 Al 7/2008 Hopen et al.
(*) Notice: Subject to any disclaimer, the term of this 2010/0153644 Al* 6/2010 Bauchot G06$1?71141155§
patent is extended or adjusted under 35 2011/0096828 Al 4/2011 Chen ef al.
U.S.C. 154(b) by 254 days. 2011/0119228 Al 5/2011 Menze et al.
2011/0276789 Al 11/2011 Chambers et al.
(21) Appl. No.: 14/264,812 2012/0054315 Al 3/2012 Morrison, IV et al.
2013/0007223 Al 1/2013 Luby et al.
(22) Filed: Apr. 29, 2014 2014/0025683 Al 1/2014 Howland et al.
? 2014/0052864 Al 2/2014 Van Der Linden et al.
3k
(65) Prior Publication Data 2014/0359043 AL® 1272014 GaO0 v G06F7(1)Sgg
US 2015/0309942 Al Oct. 29, 2015 * cited by examiner
(51) Imt.CL . o
GOGF 12/00 (2006.01) Primary Examiner — John A Lane
GO6F 9/50 (2006.01) 57 ABSTRACT
GO6F 12/10 (2016.01) 7
GO6F 17/30 (2006.01) Systems, methods, and software described herein provide
(52) U.S.CL accelerated input and output of data in a work process. In
CPC ... GOG6F 9/5016 (2013.01); GO6F 12/1045 one example, a method of operating a support process within
(2013.01); GO6F 17/30 (2013.01); GO6F a computing system for providing accelerated input and
2212/1016 (2013.01); GOGF 2212/1041 output for a work process includes monitoring for a file
(2013.01); GO6F 2212/154 (2013.01); GO6F mapping attempt initiated by the work process. The method
2212/608 (2013.01) further includes, in response to the file mapping attempt,
(58) Field of Classification Search identifying a first region in memory already allocated to a

CPC ..ccovvvvvcrnne GOG6F 12/1045; GO6F 2212/1016;
GOG6F 2212/608; GOGF 2212/154; GOGF
2212/1041

See application file for complete search history.

20
w

3. ASSOCIATE

cache service, and associating the first region in memory
with the work process.

20 Claims, 8 Drawing Sheets

CACHE SERVICE MEMORY «—
230

SRR

OPERATION 300

JAVA VM MEMORY 300
220 »

301
INITIATE AN ATTEMPT TO MAP A FILE |’V

2. IDENTIFIED INITIATE PROCESSING OF DATA USING e
MEMORY MAPPED CACHE SERVICE MEMORY
1. INQUIRY

KERNEL MEMORY
210

OPERATION 400

US 9,483,310 B2

Sheet 1 of 8

Nov. 1, 2016

U.S. Patent

N

0t
AdOLISOd3d

I J-ENOIA

0ct

JdOVHO01S

N
N~

ol
AJOW3N
JHOVO

v
(SIWA VAVP

42
dOOdvH

1 SINILNOD

vivda

JOING3S IHOVO

111 o1t
3ddON 3ddON

Sl
3JdON

()
d31SN10

US 9,483,310 B2

Sheet 2 of 8

Nov. 1, 2016

U.S. Patent

¢ RNOIH

0l¢

AJONIN TINH3IA

AHINONI *}

AHOWNIN
a3idIAN3dl ¢

(044
AHOWNIAN NA VAP

00¢€ NOILVd3dO

—

(054
AJOW3N 30INH3S JHOVO

F1VIOOSSY '€

b
00

US 9,483,310 B2

Sheet 3 of 8

Nov. 1, 2016

U.S. Patent

¥ RNOI

oor

ANIHOVIA TVNLAHIA
VAVI 3HL O1 NOI©3Y 3HL J1VIOOSSY

T

20r ™

JOINHES IHOVO V OL dd1vOO0 11V
AHOWEN NI NOID3Y V AdILN3dI
‘1dNILLY NV OL JAISNOLS3NY

N

1024

ERIE
VYV dVN Ol 1dNT11V NV 404 HOLINOW

€ RINOI4

20EY

AHONW3IW IDIAHIS FHOVO A3ddvVIN
ONISN Y1vad 40 ONISS3IO0Hd ILVILINI

T

LOE

1714 ¥V dVIN OL LdNF11V NV 3LVLLINI

A

00c

US 9,483,310 B2

Sheet 4 of 8

Nov. 1, 2016

U.S. Patent

9 RINDI4

-r—_————

0€9 AHOW3N
30ING3S FHOVO

¢9 AHOWIN WAP

7

T29 AHOWIA WAP

79 AJOWIIN M4

T#9 AJOWIN S

219 AHOWIN WA L19 AHOWIN WA

09 AHOW3IN LSOH

S 3HNOI4

[™ o5 avonan _
| OIAY3S 3HO

i

225 AJOWIN AP TZS AJOWIN NAP

018 AHOWIANW YHOMINYHS dO0AVH

00S AMOW3IIN AON ¥3LSNTO

US 9,483,310 B2

Sheet 5 of 8

Nov. 1, 2016

U.S. Patent

834N9I4

018 AYOW3AN
TVYOISAHd LSOH

128 TE8 0z8 0ce
TANYIY IAON WA AP TINYIN IAON WA WAP
LTNOI
Tz 71 \
AHONWIAN TVIISAHA \m_IO<O
(] 0cZ
TaNA3IXM JAON WAP

US 9,483,310 B2

Sheet 6 of 8

Nov. 1, 2016

U.S. Patent

6 JJNOId

016
AHOWIN TVOISAHd

076 AHOWIN
J3INH3S FHOVO

S¥6
NOILHOd WAr

&

ALIINTdl ¢

026
TANG3M 3AdON

<

Z\Gomm,\ €

AHINONI '}

0€6
INAP

US 9,483,310 B2

Sheet 7 of 8

Nov. 1, 2016

U.S. Patent

0l FdNOI4

000} NFLSAS ONILNHINOD IAON 400AVH

900} 30IAIA AYOWIN
0L0l 6001 8004
3INAow 31naow | | 31naow —)
31VI00SSY | | AdIIN3al | | YOLINOW SOV aMZLN|
020} TINYIN y3sn
00} IYYML40S
100}
5004
J0V4Y3LNI
AYLINDYIO NGO
€00} WILSAS ONISSTO0d

US 9,483,310 B2

Sheet 8 of 8

Nov. 1, 2016

U.S. Patent

2l NSO

SS3004dd M¥HOM IHL OL
AHOW3AN NI NOID3Y FHL 31VIOOSSY

T

IOINY3S
JHOVO O1 d31LvO0TIV AHOWIN
20z NI NOIDTIY V A4ILNTAI ‘ATIAISNOLSTY

T

3714 dVIN OL 1S3NDIY V AdJILNIAl

2L\

L2
S
00z}
Ll F¥NOId
OLLL OVIT AHOW3I Svil
AHON3IN 3AON 3OIAY3S FHOVD NOIOTH YHOM
LVIDOSSY °€
AJILN3AI T — ocIT
0zTT P Ochl
00ud T 1S3N03Y 4 | D0Hd XHOM
140ddns

US 9,483,310 B2

1

ASSOCIATING CACHE MEMORY WITH A
WORK PROCESS

TECHNICAL FIELD

Aspects of the disclosure are related to computing hard-
ware and software technology, and in particular to associ-
ating cache memory to work processes.

TECHNICAL BACKGROUND

An increasing number of data-intensive distributed appli-
cations are being developed to serve various needs, such as
processing very large data sets that generally cannot be
handled by a single computer. Instead, clusters of computers
are employed to distribute various tasks or jobs, such as
organizing and accessing the data and performing related
operations with respect to the data. Various applications and
frameworks have been developed to interact with such large
data sets, including Hive, HBase, Hadoop, Amazon S3, and
CloudStore, among others.

At the same time, virtualization techniques have gained
popularity and are now commonplace in data centers and
other environments in which it is useful to increase the
efficiency with which computing resources are used. In a
virtualized environment, one or more virtual machines are
instantiated on an underlying computer (or another virtual
machine) and share the resources of the underlying com-
puter. These virtual machines may employ the applications
and frameworks that typically reside on real machines to
more efficiently process large data sets.

Overview

Provided herein are systems, methods, and software for
associating cache memory to a work process. In one
example, a method of operating a support process within a
computing system for providing accelerated input and out-
put for a work process includes monitoring for a file map-
ping attempt initiated by the work process. The method
further includes, in response to the file mapping attempt,
identifying a first region in memory already allocated to a
cache service, and associating the first region in memory
with the work process.

In another instance, computer apparatus to provide accel-
erated input and output with respect to a work process
includes processing instructions that direct a support process
of'a computing system to monitor for a file mapping attempt
initiated by the work process. The processing instructions
further direct the support process to, in response to the file
mapping attempt, identify a first region in memory already
allocated to a cache service, and associate the first region in
memory with the work process. The computer apparatus
further includes one or more non-transitory computer read-
able media that store the processing instructions.

In a further example, a node computing system for
providing accelerated input and output with respect to a
work process includes the work process configured to ini-
tiate a file mapping attempt. The node computing system
further provides a support process configured to identify the
file mapping attempt. The support process is further config-
ured to, in response to the file mapping attempt, identify a
first region in memory already allocated to the cache service,
and associate the first region in memory already allocated to
the cache service with the work process.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the disclosure can be better understood
with reference to the following drawings. While several

10

15

20

25

30

35

40

45

50

55

60

65

2

implementations are described in connection with these
drawings, the disclosure is not limited to the implementa-
tions disclosed herein. On the contrary, the intent is to cover
all alternatives, modifications, and equivalents.

FIG. 1 illustrates map reduce system for processing data
within cluster nodes.

FIG. 2 illustrates an operational scenario for operating a
cluster node in a map reduce cluster.

FIG. 3 illustrates a method of operating a Java virtual
machine to request a mapped file.

FIG. 4 illustrates a method of operating a kernel to map
cache memory for a Java virtual machine.

FIG. 5 illustrates cluster node memory for allocating
shared memory to a cache service.

FIG. 6 illustrates host memory for allocating shared
memory in a cache service.

FIG. 7 illustrates mapping Java virtual machine memory
in physical memory.

FIG. 8 illustrates mapping host physical memory for
multiple Java virtual machines.

FIG. 9 illustrates an overview for providing cache service
memory to a Java virtual machine.

FIG. 10 illustrates a Hadoop node computing system for
mapping shared memory to Java virtual machines.

FIG. 11 illustrates an overview for providing cache ser-
vice memory to a work process.

FIG. 12 illustrates a method of operating a support
process in a node to associate cache memory with a work
process.

TECHNICAL DISCLOSURE

Various examples described herein provide for associat-
ing cache memory to work processes. In particular, appli-
cations and frameworks have been developed to process vast
amounts of data from storage repositories using one or more
processing nodes or computing systems. These processing
nodes may include real processing nodes, such as server
computers, desktop computers, and the like, as well as
virtual processing nodes that execute within real computing
systems.

To process that data, data objects from a storage reposi-
tory are transferred into a cluster of nodes allowing each of
the processing nodes to have access to the data. Once
transferred in, the framework and work processes, such Java
virtual machines, process the data in parallel to generate a
query response based on the data. In the present example, a
cache service is included that provides shared memory
between the processing nodes of the cluster and the Java
virtual machines (JVMs) executing thereon. This shared
cache allows data to be available directly to the JVMs
without the need of loading the data into the node and
copying the data into the JVM. In particular, to provide the
shared memory to the JVMs, a kernel of the processing
node, which may comprise a Linux kernel in many
examples, monitors for a file mapping attempt initiated by a
JVM. In response to the attempt, the kernel associates shared
cache service memory to the JVM to allow the JVM direct
access to the data objects that are delivered from the storage
repository.

Although the previous example use JVMs, it should be
understood that any work process, such as an application or
other work process, might require the same memory asso-
ciation as the JVMs to access cache service memory. Fur-
ther, although a kernel was used in the previous example,
any similar support process that could associate cache
service memory to a work process may be used. For

US 9,483,310 B2

3

example, a work process may initiate a request to map a file.
Responsive to the request, the support process may identify
a region in memory allocated to a cache service, and
associate the region in memory allocated to the cache
service to the work process.

To further illustrate the processing of data within a
distributed data processing system, FIG. 1 is included. FIG.
1 illustrates map reduce system 100 for processing data
within cluster nodes. System 100 includes cluster 110, cache
service 120, and storage repository 130. Cluster 110 further
includes nodes 115-117, and node 117 further includes
contents 140 that comprise Hadoop 142, Java virtual
machines (JVMs) 144, and cache memory 146.

Nodes 115-117 may comprise any real or virtual comput-
ing device capable of executing Hadoop or other similar
map reduce framework. Nodes 115-117 may each include
real or virtual processing systems, storage systems, commu-
nication interfaces, user interfaces, or other similar comput-
ing elements.

Cache service 120 may comprise any real or virtual
computing element capable of distributing data objects to
nodes 115-117. Cache service 120 may include real or
virtual processing systems, storage systems, communication
interfaces, user interfaces, or other similar computing ele-
ments. Although illustrated separate in the present example,
it should be understood that cache service 120 might be
distributed cache service, and might reside wholly or par-
tially on the same devices as nodes 115-117.

Storage repository 130 may comprise one or more storage
volumes capable of storing data to be processed by nodes
115-117. Storage repository 130 may include disk drives,
solid state drives, controllers, and other elements that pro-
vide data to nodes 115-117 using cache service 120.

In operation, cluster 110 is configured with a plurality of
nodes 115-117 to process large data sets that would be
difficult to handle with a single computing device. Nodes
115-117 may comprise physical computing devices in some
examples, but may also comprise virtual computing devices
or virtual machines that execute on top of real computing
devices or host systems. These virtual machines may
execute using a hypervisor that abstracts the physical hard-
ware of the host system and provides necessary elements of
the host to the virtual machine. The necessary elements may
include virtual hardware, such as communication interfaces,
processing systems, storage elements, or any other similar
virtualized item.

In the present example, node 117 includes contents 140,
which comprise Hadoop framework 142, one or more JVMs
144, and cache memory 146. Although Hadoop 142 is
included in the present example, it should be understood that
other map reduce frameworks may be employed across
cluster 110. In operation, Hadoop 142 requires one or more
JVMs 144 to process portions of large data sets that are
provided by cache service 120. To temporarily cache and
access the data, shared cache memory 146 is included that
is shared between node 117 and JVMs 144. Accordingly, as
data is passed to node 117, the data is stored within cache
memory 146 to give quick access to JVMs 144. Although
contents are illustrated for a single node in the present
example, it should be understood that the contents of nodes
115-116 might be similar to the contents of node 117.

To better illustrate the caching of content for a Java virtual
machine, FIG. 2 is included. FIG. 2 illustrates an operational
scenario 200 for operating a cluster node in a map reduce
cluster. Operational scenario 200 may be representative of
the operation of any of nodes 115-117. Operational scenario
200 includes kernel memory 210, Java virtual machine

10

15

20

25

30

35

40

45

50

55

60

65

4

(JVM) memory 220, and cache service memory 230. Kernel
memory 210 is representative of the memory that is needed
to operate the operating system kernel of the cluster node,
such as node 117. Cache service memory 230 is represen-
tative of the shared memory that is used by the cache service
to import data for processing into the cluster nodes. JVM
memory 220 is representative of memory needed to execute
a JVM spawned by Hadoop or other similar map reduce
framework.

In operation, Hadoop or another similar map reduce
framework within the cluster node may initiate a JVM to
process data that is distributed to the processing node by a
cache service. Once the JVM is initiated and allocated JVM
memory 220, the JVM may initiate operation 300 to accel-
erate input/output (I/0) within the JVM. To accelerate the
1/O for the JVM, the JVM will inquire the kernel to map a
file to provide easier 1/O transactions for the JVM. In some
examples, this file mapping inquiry may comprise a new /O
channel request to map specific memory identified by the
kernel to the JVM.

To respond to the inquiry, kernel memory 210 includes
operation 400 that can be executed to process the inquiry
from the JVM. Accordingly, in response to identifying the
inquiry from the JVM, the kernel identifies at least a portion
of cache service memory 230 to be used for the JVM. Once
identified, the portion of cache service memory 230 is
associated with the JVM. By associating a portion of cache
service memory 230, the JVM is permitted quicker access to
data provided by the cache service for processing.

For example, returning to FIG. 1, a portion of cache
memory 146 may be associated with a JVM in JVMs 144.
As a result, if cache service 120 attempts to bring data into
node 117, the data may be placed in the portion of cache
memory 146 that is associated with the JVM. Thus, instead
of placing the data first into the node and copying the data
into the JVM, the JVM may have access to the data in the
memory that is shared between the node and the JVM.

Referring now to FIG. 3, FIG. 3 illustrates operation 300
for operating a Java virtual machine to request a mapped file.
As depicted, operation 300 initiates an attempt to map a file
to the JVM (301). This mapping of a file typically allows the
JVM to have access to a memory space for a file that is
managed by the node. However, in the present example,
rather than mapping a file, the JVM is mapped to at least a
portion of cache service memory 230, which caches data
provided by the cache service for processing. Thus, rather
than reading a file from memory, the JVM is configured to
initiate processing of data that is cached in the mapped
portion of cache service memory 230 (302).

Turning to FIG. 4, FIG. 4 illustrates operation 400 for
operating a node kernel to map cache memory for a Java
virtual machine. As depicted, operation 400 monitors for an
attempt to map a file from one or more JVMs on the node
(401). In response to an attempt, operation 400 identifies a
region in memory that is allocated to the cache service (402).
Once the region in memory is identified, operation 400
associates the region in memory with the Java virtual
machine (403) to give the Java virtual machine access to
data in the cache service memory.

Referring to FIG. 2, the JVM initiates a request to map a
file, which is identified by the kernel of the processing node.
Responsive to the map request, the kernel identifies at least
a portion of cache service memory 230 that can be allocated
for the virtual machine, and allocates the portion of cache
service memory 230 to the JVM. Once the association is

US 9,483,310 B2

5

complete, data may be placed within the mapped cache
service memory 230 to allow access to the JVM for data
processing.

Referring to FIG. 5, FIG. 5 illustrates cluster node
memory 500 for allocating shared memory to a cache
service. Cluster node memory 500 includes framework
memory 510, Java virtual machines (JVMs) memory 521-
522, and cache service memory 530. In the present example,
cluster node memory 500 is representative of memory for a
physical node within a data processing cluster, however, it
should be understood that nodes might be virtual machines
in some examples.

In operation, a cluster node is configured with Hadoop or
another similar framework to process large data sets in
parallel with other nodes. This framework, represented in
memory 500 by Hadoop framework memory 510, initiates
JVMs to bring in and process the necessary data. In the
present example, the memory for the initiated JVMs is
represented in FIG. 5 by JVM memory 521-522 that
includes a portion of memory that is associated with cache
service memory 530. As a result of this association, JVM
memory 521-522 includes at least a portion of a shared
cache that temporarily stores data from various storage
repositories to be processed.

For example, if a data object were to be loaded into the
node for processing by a JVM, the object may be placed in
the shared portion of cache service memory 530 and JVMs
memory 521-522. Accordingly, once the object is cached,
the appropriate JVM may load and process the object
without the need of copying the data object from cluster
node memory 500 to separate memory for each of the JVMs.

As another illustrated example, FIG. 6 is included. FIG. 6
illustrates host memory 600 for allocating shared memory in
a cache service. Host memory 600 is illustrative of a
memory system in a host computing system capable of
initializing and executing a variety of virtual machine nodes.
These virtual machine nodes are allocated virtual machine
memory 611-612 with framework memory 641-642 and
Java virtual machine memory 621-622. Host memory 600
further includes cache service memory 630 to cache data for
processing within the virtual machines.

In operation, a host may be configured to execute a
plurality of virtual machines that act as nodes within a data
processing system. These virtual machines may execute on
top of a hypervisor that abstracts the physical components of
the host machine and provides them to the virtual machines
for execution. In the present instance, each of the virtual
machines is represented in memory by virtual machine
(VM) memory 611-612. Within each of the virtual machines,
a framework, such as Hadoop or other map reduce frame-
work, may be employed that is configured to process data as
it is distributed to the various nodes of the cluster. Here, the
framework is represented in memory has framework (FW)
memory 641-642.

Once the framework is initiated within the virtual
machines, the framework may be used to initiate one or
more Java virtual machines or JVMs to assist in the pro-
cessing of large data sets. These JVMs, represented in
memory by JVM memory 621-622, access data that is
provided by the framework and process the data in parallel
to derive an answer to a query by an administrator or some
other process. To provide data to the virtual machines, a
cache service may be employed in the host that communi-
cates with one or more storage repositories to distribute data
to each of the nodes within the host.

In the present example, to quickly provide the data for
each of the JVMs, each JVM is configured to inquire the

10

15

20

25

30

35

40

45

50

55

60

65

6

virtual machine node kernel to map a file to the JVM.
Responsive to this request, the kernel identifies at least a
portion of cache service memory 630 that can be allocated
to the JVM, and associates the portion of cache service
memory 630 with the virtual machine. As a result of this
association, the virtual machines are capable of being deliv-
ered data from the cache service, and placing the data
directly into a portion of memory that is accessible by the
VM.

As illustrated in the present example, cache service
memory 630 is configured to partially overlap with JVM
memory 621-622 within VM memory 611-612. Accordingly,
the overlapping portions of cache service memory 630 serve
as the amount of memory that data can be cached in and
directly accessible by the JVMs. Although illustrated in the
present example with two virtual machines, it should be
understood that any number of virtual machines might be
implemented within a host. Further, although each of the
virtual machines contains a single JVM, it should be under-
stood that any number of JVMs might be spawned within
each of the virtual machines.

Referring now to FIG. 7 to further demonstrate the
mapping of memory to a Java virtual machine. FIG. 7
illustrates mapping Java virtual machine memory in physical
memory according to one example. FIG. 7 includes physical
memory 710, node kernel 720, JVM 730, and cache 740. As
depicted, a node within a processing cluster includes physi-
cal memory 710 that can be used for a variety of different
purposes during the execution of the node. In the present
example, at least a portion of physical memory 710 is
allocated to cache 740, which is used to cache data objects
as they are distributed within a cluster for parallel data
processing. This cache 740 is initially allocated with kernel
720, but is reserved to be accessed by the various Java
virtual machines as they are initiated to process the data that
is brought into the node.

Using the present example, JVM 730 may be initiated by
Hadoop or another similar map reduce framework to process
data within the node. Once initiated, JVM 730 may inquire
node kernel 720 to map a file for JVM 730. Responsive to
the inquiry, node kernel 720 may identify at least a portion
of cache 740 that can be used for JVM 730, and associate the
portion of cache 740 with JVM 730. As a result, JVM 730
may have quicker access to data that would otherwise need
to be copied into JVM 730 before it could be accessed. In
one example, a distributed cache service may be employed
within a cluster to distribute data amongst each of the cluster
nodes. This cache service may be configured to place the
files within cache 740, which would allow JVM 730 to read
the file and make the necessary processes.

Similar to the operation described above with respect to
FIG. 7, FIG. 8 is included to illustrate mapping host physical
memory for multiple Java virtual machines and multiple
virtual nodes. FIG. 8 includes host physical memory 810,
node kernels 820-821, JVMs 830-831, and cache 840. Host
physical memory 810 is representative of physical memory
for a host computing device such as a server or desktop
computer with the ability to execute a plurality of virtual
machines. In some instances, the host computing device may
include a hypervisor that is configured to abstract the
physical elements of the host computing device and provide
them to virtual machines.

In the present example, host physical memory 810 is
configured with a cache portion 840, for caching data to be
processed by the various virtual machines. Accordingly,
each virtual machine node kernel 820-821 is allocated a
portion of the cache to allow access to data that is stored

US 9,483,310 B2

7

within cache 840. To process the data in each of the virtual
machines, the virtual machines may be configured with
Hadoop or another similar distributed framework. This
framework may initiate and execute JVMs, such as JVMs
830-831, within the virtual machines to process the neces-
sary data objects. Once initiated, JTVMs 830-831 inquire VM
node kernels 820-821, respectively, to map a file to the
JVMs. This mapping of the file is used to allow JVMs
830-831 quick access to files that are typically only acces-
sible by the VM itself. Responsive to the JVM request, VM
node kernels 820-821 identify at least a portion of cache 840
that can be mapped to each JVM 830-831, and associates the
identified portion with the JVM. As a result of this mapping,
data that is placed in cache 840 for each of VM node kernels
820-821 is consequently also available to JVMs 830-831.

FIG. 9 illustrates an overview 900 for providing cache
service memory to a Java virtual machine. Overview 900
includes physical memory 910, node kernel 920, JVM 930,
cache service memory 940, and JVM portion 945. Node
kernel 920 may represent an operating system kernel in a
real device, or may represent an operating system kernel for
a virtual computing device or machine. In operation, a node,
which may be real or virtual, is initiated to process large data
sets in parallel with other nodes in a processing cluster.

When initiated, node kernel 920 monitors for file mapping
requests for JVMs initiated on the node to map the JVMs to
cache memory 940. Cache memory 940 is allocated memory
that allows a cache service to provide data for processing by
JVMs executing within the node. Once a job is allocated for
the node, Hadoop or some other similar map reduce frame-
work may initiate JVM 930 to assist in the parallel process-
ing of the one or more data sets. Once initiated, JVM 930
inquires node kernel 920 to have a file mapped to JVM 930.
Responsive to the inquiry, node kernel 920 identifies JVM
portion 945 to be mapped to JVM 930. This identified
portion of cache service memory 940 is then associated with
JVM 930, allowing JVM 930 access to the data that is
cached in JVM portion 945. By caching the data in a shared
portion of memory, the data can be stored using the node, but
quickly accessed by the JVM executing within the node.

Turning to FIG. 10, FIG. 10 illustrates a Hadoop node
computing system 1000 for mapping shared memory to Java
virtual machines. Hadoop node computing system 1000 is
an example of nodes 115-117, although other examples of
nodes may exist. Hadoop node computing system 1000
comprises communication interface 1001, user interface
1002, and processing system 1003. Processing system 1003
is linked to communication interface 1001 and user interface
1002. Processing system 1003 includes processing circuitry
1005 and memory device 1006 that stores operating soft-
ware 1007.

Communication interface 1001 comprises components
that communicate over communication links, such as net-
work cards, ports, RF transceivers, processing circuitry and
software, or some other communication devices. Commu-
nication interface 1001 may be configured to communicate
over metallic, wireless, or optical links. Communication
interface 1001 may be configured to use TDM, IP, Ethernet,
optical networking, wireless protocols, communication sig-
naling, or some other communication format—including
combinations thereof.

User interface 1002 comprises components that interact
with a user. User interface 1002 may include a keyboard,
display screen, mouse, touch pad, or some other user input/
output apparatus. User interface 1002 may be omitted in
some examples.

10

15

20

25

30

35

40

45

50

55

60

65

8

Processing circuitry 1005 comprises microprocessor and
other circuitry that retrieves and executes operating software
1007 from memory device 1006. Memory device 1006
comprises a non-transitory storage medium, such as a disk
drive, flash drive, data storage circuitry, or some other
memory apparatus. Operating software 1007 comprises
computer programs, firmware, or some other form of
machine-readable processing instructions. Operating soft-
ware 1007 includes monitor module 1008, identify module
1009, and associate module 1010, which may be located
within the kernel 1020 for Hadoop node computing system
1000. Operating software 1007 may further include an
operating system, utilities, drivers, network interfaces,
applications, or some other type of software. When executed
by circuitry 1005, operating software 1007 directs process-
ing system 1003 to operate Hadoop node computing system
1000 as described herein.

In particular, Hadoop node computing system 1000 is
representative of a computing system for processing large
data sets in a cluster environment. Hadoop node computing
system 1000 may be representative of a real computing
device, such as a server or desktop, but may also be
representative of a virtual computing device within a host
computer. In operation, computing system 1000 is config-
ured to execute Hadoop or another similar map reduce
framework. During the execution of the framework, one or
more Java virtual machines JVMs may be initiated, which
process the data necessary for the data analysis.

In the present example, once the JVMs are initiated,
monitor module 1008 is configured to monitor for a file
mapping attempt from the Java virtual machine. The file
mapping attempt comprises an attempt by a JVM to map a
file in memory to allow quicker access by the JVM to the
file. Responsive to identifying a file mapping attempt, iden-
tify module 1009 identifies a region in memory allocated to
a cache service. Prior initiating any of the JVMs, a cache
service may allocate a certain amount of memory in Hadoop
node computing system 1000 for caching data to be pro-
cessed within the system. This memory may be allocated as
a portion of kernel 1020, or any other location that is
accessible by kernel 1020 and capable of being mapped to
the initiated JVMs. Once the region in memory allocated to
the cache service is identified, associate module 1010 asso-
ciates the region in memory allocated to the cache service
with the Java virtual machine. Accordingly, rather than
being mapped to a file, the virtual machine is associated with
memory that is allocated to the cache service. Thus, as data
is delivered to computing system 1000 for processing by one
or more JVMs, the JVMs may have a direct mapping to the
cache service to quickly access the information without
transferring the data into the JVM.

Although illustrated in the present example with three
software modules, it should be understood that any number
of software modules might be employed within computing
system 1000 to implement operations described herein.
Further, although illustrated similar to a real computing
device in the present example, it should be understood that
computing system 1000 might represent a virtual computing
device. In such instances, computing system 1000 may be
configured to operate within a host with other nodes for
processing the large data sets. In some examples, the host
may include a hypervisor that is used to abstract physical
elements of the host machine and provide them to the
processing nodes, like computing system 1000. As a result,
multiple nodes may be capable of execution on a single host
computing system.

US 9,483,310 B2

9

While illustrated in the previous examples using JVMs, it
should be understood that any work process, such as an
application or other work process, might require the same
file mapping as the JVMs to access cache service memory.
Further, although a kernel was used in the previous
examples, any similar support process that could associate
cache service memory to a work process may be used. For
example, referring to FIG. 11, FIG. 11 illustrates an over-
view for providing cache service memory to a work process
within a computing node or system. FIG. 11 includes node
memory 1110, support process 1120, and work process 1130.
The node memory further includes cache service memory
1140 and work region 1145 within cache service memory
1140.

In operation, work process 1130, which may be any java
virtual machine or process within the computing node, may
initiate a request to map a file. This mapping request is
typically used to share a file in memory that would otherwise
need to be copied into memory for work process 1130.
Responsive to the map request, support process 1120 iden-
tifies a region in memory that is allocated to a cache service,
in the present example work region 1145, and associates
work region 1145 of cache service memory 1140 to work
process 1130. By allocating work region 1145 of cache
service memory 1140, work process 1130 may have access
to data that may otherwise need to be copied into a non-
shared region of memory for the work process.

To further illustrate the operation of support process 1120,
FIG. 12 is included. FIG. 12 illustrates a method 1200 of
operating a support process in a node to associate cache
memory with a work process. The method includes identi-
fying a request to map a file from a work process (1201). In
some examples, the work process may comprise a Java
virtual machine that is configured to assist a map reduce
framework, but it should be understood that the work
process may comprise other types of work processes. Fur-
ther, the support process may be the computer node kernel
or Linux kernel in some instances, but may comprise any
other support process capable of allocating memory within
the node. Once the support process receives the request to
map a file, the support process identifies a region in memory
allocated to the cache service, and associates the region in
memory to the work process. Referring back to FIG. 11,
support process 1120 identifies work region 1145 for work
process 1130. As a result, once work region 1145 is asso-
ciated with work process 1130, work process 1130 can use
the cache memory to complete an assigned task.

The functional block diagrams, operational sequences,
and flow diagrams provided in the Figures are representative
of exemplary architectures, environments, and methodolo-
gies for performing novel aspects of the disclosure. While,
for purposes of simplicity of explanation, methods included
herein may be in the form of a functional diagram, opera-
tional sequence, or flow diagram, and may be described as
a series of acts, it is to be understood and appreciated that the
methods are not limited by the order of acts, as some acts
may, in accordance therewith, occur in a different order
and/or concurrently with other acts from that shown and
described herein. For example, those skilled in the art will
understand and appreciate that a method could alternatively
be represented as a series of interrelated states or events,
such as in a state diagram. Moreover, not all acts illustrated
in a methodology may be required for a novel implemen-
tation.

The included descriptions and figures depict specific
implementations to teach those skilled in the art how to
make and use the best option. For the purpose of teaching

10

15

20

25

30

35

40

45

50

55

60

65

10

inventive principles, some conventional aspects have been
simplified or omitted. Those skilled in the art will appreciate
variations from these implementations that fall within the
scope of the invention. Those skilled in the art will also
appreciate that the features described above can be com-
bined in various ways to form multiple implementations. As
a result, the invention is not limited to the specific imple-
mentations described above, but only by the claims and their
equivalents.
What is claimed is:
1. A method of operating a support process on a virtual
machine for providing accelerated input and output for a
work process, the method comprising:
monitoring for a file mapping attempt initiated by the
work process, wherein the work process comprises a
Java virtual machine executing on the virtual machine;

in response to the file mapping attempt, identifying a first
region in memory already allocated to a cache service,
wherein the memory comprises host memory acces-
sible by the virtual machine and the cache service
executing at least partially outside of the virtual
machine and wherein the cache service is configured to
access data for the work process and cache the data in
the memory; and

associating the first region in memory with the work

process.
2. The method of claim 1 wherein the support process
comprises a kernel process for the computing system.
3. The method of claim 1 further comprising identifying
first data for the Java virtual machine from a storage
repository, and caching, by the cache service, the first data
in the first region of the memory.
4. The method of claim 3 wherein the file mapping
attempt initiated by the work process comprises a new
input/output channel request initiated by the Java virtual
machine.
5. The method of claim 1 wherein the cache service
comprises a distributed cache service for providing data to
one or more work processes.
6. The method of claim 1 further comprising:
monitoring for a second file mapping attempt initiated by
a second work process;

in response to the second file mapping attempt, identify-
ing a second region in memory already allocated to the
cache service; and

associating the second region in memory with the second

work process.

7. The method of claim 1 wherein the work process
comprises a work process initiated by a Hadoop framework.

8. The method of claim 1 wherein the work process
comprises a work process initiated by a map reduce frame-
work.

9. A computer apparatus to provide accelerated input and
output with respect to a work process, the computer appa-
ratus comprising:

processing instructions that direct a support process of a

computing system, when executed by the computing

system, to:

monitor for a file mapping attempt initiated by the work
process, wherein the work process comprises a Java
virtual machine executing in a virtual machine;

in response to the file mapping attempt, identify a first
region in memory already allocated to a cache ser-
vice, wherein the memory comprises host memory
accessible by the virtual machine and the cache
service executing at least partially outside of the
virtual machine and wherein the cache service is

US 9,483,310 B2

11

configured to access data for the work process and
cache the data in the memory; and

associate the first region in memory with the work
process; and

one or more non-transitory computer readable media that

store the processing instructions.

10. The computer apparatus of claim 9 wherein the
support process comprises a kernel process for the comput-
ing system.

11. The computer apparatus of claim 9 wherein the
processing instructions further direct the computing system
to identify first data for the Java virtual machine from a
storage repository and cache, by the cache service, the first
data in the first region of the memory.

12. The computer apparatus of claim 11 wherein the file
mapping attempt initiated by the work process comprises a
new input/output channel request initiated by the Java
virtual machine.

13. The computer apparatus of claim 9 wherein the
processing instructions further direct the support process of
the computing system to:

monitor for a second file mapping attempt initiated by a

second work process;

in response to the second file mapping attempt, identify a

second region in memory already allocated to the cache
service; and

associate the second region in memory with the second

work process.

14. The computer apparatus of claim 9 wherein the work
process comprises a work process initiated by a Hadoop
framework.

15

30

12

15. The computer apparatus of claim 9 wherein the work
process comprises a work process initiated by a map reduce
framework.

16. The computer apparatus of claim 9 wherein the
computing system comprises a real computing system.

17. A node computing system for providing accelerated
input and output with respect to a work process executing on
a virtual machine comprising:

the work process configured to:

initiate a file mapping attempt; and

a support process executing on the virtual machine con-

figured to:

identify the file mapping attempt;

in response to the file mapping attempt, identify a first
region in memory already allocated to a cache ser-
vice, wherein the memory comprises host memory
accessible by the virtual machine and the cache
service executing at least partially outside of the
virtual machine and wherein the cache service is
configured to access data for the work process and
cache the data in the memory; and

associate the first region in memory already allocated to
the cache service with the work process.

18. The node computing system of claim 17 wherein the
file mapping attempt comprises a new input/output channel
request.

19. The node computing system of claim 17 wherein the
work process comprises a Java virtual machine.

20. the node computing system of claim 17 wherein the
support process comprises a kernel process for the virtual
machine.

